Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.[1]. Contoh gerak harmonik sederhana. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu:[1] Gerak Harmonik Sederhana [GHS] Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U

FisikaGelombang Mekanik Kelas 10 SMAGetaran HarmonisKarakteristik Getaran Harmonis Simpangan, Kecepatan, Percepatan, dan Gaya Pemulih, Hukum Kekekalan Energi Mekanik pada Ayunan Bandul dan Getaran PegasDalam getaran harmonis, kecepatan getaran adalah ....A. selalu sebanding dengan simpangannyaB. tidak tergantung pada simpangannyaC. berbanding lurus dengan sudut fasenyaD. berbanding terbalik dengan kuadrat frekuensinyaE. tidak bergantung pada amplitudoKarakteristik Getaran Harmonis Simpangan, Kecepatan, Percepatan, dan Gaya Pemulih, Hukum Kekekalan Energi Mekanik pada Ayunan Bandul dan Getaran PegasGetaran HarmonisGelombang MekanikFisikaRekomendasi video solusi lainnya0334Sebuah partikel bergerak harmonik dengan amplitudo 13 cm ...Sebuah partikel bergerak harmonik dengan amplitudo 13 cm ...0050Persamaan antara getaran dan gelombang adalah .... 1 ke...Persamaan antara getaran dan gelombang adalah .... 1 ke...0050Panjang sebuah bandul 40 cm . Bandul disimpangkan dengan...Panjang sebuah bandul 40 cm . Bandul disimpangkan dengan...0253Sebuah benda yang diikat dengan seutas benang hanya dapat...Sebuah benda yang diikat dengan seutas benang hanya dapat...

Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Pengertian ini diambil dari internet. Simbol g digunakan sebagai satuan percepatan. Dalam fisika s2 (meter per detik 2 2.
Getaran Fisika SMA – Dear All, kali ini kita belajar sedikit mengenati materi getaran di SMA. Masih ingatkah sobat apa itu getaran, fekuensi, dan periode? ngga pakai lama temukan jawabannya di uraian berikut Apa itu Getaran? Definisi dari getaran adalah gerak bolak balik back and forth motion yang terjadi secara periodik melalui suatu titik kesetimbangan. Getaran terjadi ketika ada gaya yang bekerja pada sebuah sistem benda elastis. Benda tersebut akan kembali ke titik kesetimbangannya setelah menerima gaya, begitu seterusnya. Yang dimaksud dengan titik kesetimbangan adalah titik saat resultan gaya yang bekerja pada benda sama dengan nol. Terjadinya sebuah getaran adalah peristiwa yang unik. Dari sebuah getaran bisa muncul berbagai besaran pokok dan turunan. Periode T adalah waktu yang diperlukan untuk sebuah getaran terjadi dengan atuan second. Frekuensi Getaran f adalah banyaknya getaran yang bisa terjadi dalam satu satuan waktu biasanya detik satuan Hertz Hz. Hubungan keduanya adalah berbanding terbalik. Periode adalah kebalikan dari frekuensi, dirumuskan Selain frekuensi dan periode ada juga namanya simpangan, kedudukan sutu titik terhadap titik kesetimbangan pada waktu tertentu. Simpangan terbesar dari sebuah getaran kemudian sobat kenal dengan nama amplitudo. Getaran Harmonik Sederhana Yang dimaksud getaran harmonik sederhana adalah sebuah getaran yang resultan gaya yang bekerja pada titik sembarang selalu mengarah pada titik keseimbangan. Besarnya gaya yang bekerja sebanding dengan jarak titik sembarang ke titik keseimbangan. Contoh getaran harmonik sederhana bisa sobat jumpai pada pegas dan pada ayunan. Perasamaan Simpangan, Kecepatan, dan Percepatan pada Getaran Dalam getaran harmonik ada besaran yang disebut simapangan, kecepatan harmonik, dan juga percepatan getarn harmonik. Simpangan paling besar dari sebuah getaran dapat dicapai benda Amplitudo atau simpangan maksimal Ym. Besarnya simpangan dirumuskan y = A sin t + θ0 A = amplitudo simpangan maksimal = frekuensi sudut θ0 = fase sudut awal Persamaan kecepatan pada getaran harmonik dapat sobat peroleh dari turunan persamaan simpanga baku terhadap waktu Vy = A cos t + θ0 ingat sobat turunan dari Sin f x adalah cos fx . f'x Sedangkan persamaan percepatan pada getaran harmonik adalah turunan pertama dari kecepatan atau turunan kedua dari sipangan ay = – 2A sin t + θ0 ingat sobat turunan dari Cos fx adalah -sin fx. f'x Sudut Fase, Fase, dan Besa Fase pada Getaran harmonik Apa itu fase, sudut fase, dan beda fase dalam getaran harmonik? Jika kita lihat dari persamaan sinpangan y = A sin t + θ0 atau bisa ditulis y = A sin 2 π t/T + θ0 yang dinamakan sudut fase adalah sudut 2 π t/T + θ0, ia dinotasikan dengan theta θ jadi rumus dari sudut fase adalah rumus di atas dapat ditulis juga nah yang kami kasih warna kuning adalah dinamakan fase getaran. Jika ketika t = t1 fase getaran adalah φ1 dan pada saat t = t2 fase getaran adalah φ2. Maka selisih fase tersebut dinamakan beda fase Δφ dirumuskan Contoh Soal Jika ada sebuat titik materi melakukan getaran harmonik sederhana dengan simpangan terbesar adalah A. Pada saat simpangannya 1/2 A √2, maka fase getaran titik tersebut terhadap garis keseimbangan adalah a. 1/4 d. 1/32 b. 1/8 e. 1/64 c. 1/16 Pembahasan Diketahui besarnya simpangan y = 1/2 A √2 A sin t + θ0 = 1/2 A √2 sin t + θ0 = 1/2 √2 sin θ = 1/2 √2 θ sudut fase = 45o = π/4 ingat sobat π = 180o hubungan sudut fase dengan fase adalah θ = 2π φ lihat rumus di atas π/4 = 2π φ 1/8 = φ Jadi fase getaran pada saat simpangan getaran 1/2 A √2 adalah 1/8 dari garis keseimbangan. Contoh soal dari Ujian Nasional 2002 Sebuah partikel bergeak harmonik dengan amplitudo 13 cm dan periode 0,1π sekon. Kecepatan partikel pada saat simpangannya 5 cm adalah? a. 2,4 m/s b. 2,4π m/s c. 2,4 m2 m/s d. 24 m/s e. 240 m/s Jawab diketahui A = 13 cm, T = 0,1π s, y = 5 cm untuk menjawab soal getaran di atas ada rumus cepat dari Vy = A cos t + θ0 ada aturan trigonometri cos2 x = 1-sin2x
Jawabanpada satu kali getaran percepatan maksimum terjadi sebanyak 2 kali. Pembahasan Pada gerak harmonik, percepatan maksimum terjadi ketika nilai y = A sesuai persamaan . Dalam satu kali getaran, benda mencapai posisi amplitudo sebanyak 2 kali. Oleh karena itu, benda mengalami 2 kali percepatan maksimum.
Apa saja sih yang memparametrisasi hal yang berulang-ulang terus?.Suatu hal yang berulang-ulang memang terkadang membosankan. Untuk menghilangkan rasa bosan itu bagaimana kalau kita analisis seberapa sering kah suatu kejadian IsiGetaranSesuatu Yang BerulangTitik EkuilibriumDiasumsikan IdealGetaran Harmonis Sederhana GHSFrekuensiRumus GHSKecepatan SudutKecepatan dan Percepatan GHSKecepatan Linear GHSPercepatan Linear GHSDalam pembahasan kali ini, kita bakal ngebahas berupa gerakan yang berulang. Artinya seberapa sering suatu gerakkan terjadi, di titik mana gerakkannya balik, dan lainnya akan menjadi daya tarik kita pada materi Yang BerulangKonsep aslinya itu sederhana, perulangan gerakkan secara terus menerus disebut sebagai getaran. Mungkin di antara beberapa tukang iseng ada yang beranggapan bahwa getaran selalu indentik dengan, misal, gempa bumi, getaran pada DVD-RW, dan lain-lain. Pemikiran tersebut tidaklah salah, tapi ada pemahaman yang lebih sederhana anak kecil yang sedang bermain ayunan, gerakkan mengayun yang secara berulang bolak-balik tersebut sudah dapat dikategorikan sebagai getaran atau isitilahnya lebih dikenal sebagai EkuilibriumMungkin di antara tukang iseng yang baca ada yang bertanya, maksud harmonik nya apa sih? Jadi, coba kita gunakan lagi contoh sebelumnya. Ayunan itu punya titik, letak, atau sebagainya, kalau kita posisikan ayunan pada titik tersebut maka ayunan tidak mengalami gerakan tersebut dinamakan titik ekuilibrium, nah lalu, maksud haromniknya apa? Harmonik di sini artinya jika ayunan kita tarik/dorong sedikit sedikit saja dari titik ekuilibriumnya, maka ayunan bakal berupaya selalu mengarah ke titik ekuilibriumnya. Diasumsikan IdealPemahaman yang perlu diperjelas lagi adalah, tadi dijelaskan bahwa getaran merupakan gerakan terus-menerus. Bagaimana jadinya kalau gerakan bolak-balik tersebut berhenti? Berarti kan tidak terus kita ambil sudut pandang yang berbeda, apakah mungkin suatu benda akan berhenti? Jika tidak dalam kondisi ideal, tentu sangat mungkin untuk berhenti, mengingat adanya gesekkan pada poros ada faktor yang terlibat, tapi dalam pembahasan kali ini, kita bakal ngebahas getaran harmonis tanpa pengaruh gaya lainnya ketika getaran terjadi kecuali gaya di awal. Getaran harmonis yang ideal ini dinamakan getaran harmonis sederhana. Getaran Harmonis Sederhana GHSSeperti yang dijelaskan, kita bakal ngebahas seberapa sering suatu gerakan terjadi, istilah tersebut dinamakan sebagai frekuensi itu mengukur seberapa banyak getaran yang terjadi dalam satu detik. Nah, artinya kita harus tahu definisi satu getaran itu seperti perhatikan gambar di bawah ini. Asumsikan kita misal memulai gerakkan dari titik dan mengayun ke kiri. Maka jika objek sudah mengayun, dilanjutkan terus hingga melakukan gerakkan yang sama ke arah kiri dan kembali ke titik lagi. Itulah yang disebut sebagai satu getaran atau getaran atau osilasi merupakan gerakkan bolak-balik yang dimulai pada suatu titik dan diakhiri pada titik itu satu siklus getaran dibutuhkan waktu selama atau periode, maka frekuensi frekuensi akan memiliki satuan , di dalam Fisika satuan tersebut dinamakan hertz atau GHSSekarang coba bayangkan, bisakah kita merepresentasikannya dengan bentuk matematis? Kira-kira fungsi apa nih, yang seiring bertambahnya variabel bebas tapi nilai hasil pemetaannya gak kemana-mana, alias jika diekspresikan kedalam rumus matematika, maka posisi benda pada suatu waktu manaKecepatan SudutPerhatikan, kecepatan sudut dapat dengan mudah diketahui nilainya. Begini, pada fungsi trigonometri, satu gelombang penuh mempunyai rentang sebesar .Telah dijelaskan juga bahwa, untuk melakukan satu siklus getaran penuh, benda memerlukan waktu sebesar .Berangkat dari gagasan tersebut, sekarang kita bisa mengetahui besar kecepatan sudut dan Percepatan GHSPerlu dibedakkan bahwa, kecepatan sudut merupakan besar perpindahan sudut yang dialami pada satu satuan waktu. Kalau kecepatan linear, merupakan besar perpindahan Linear GHSDi sini, kita sudah punya fungsi posisi benda terhadap waktu yaitu , sekarang ingat lagi bahwa, kecepatan adalah turunan dari fungsi karena itu, kita dapat mengetahui kecepatan linear yang dialami suatu benda ketika melakukan osilasi, melalui turunan berikut satuan dan penjelasan parameter yang mirip seperti pada rumus untuk melihat ada yang aneh gak, kok tandanya negatif? Nah kecepatan bernilai negatif ini disebabkan karena, seketika benda dilepas dari simpangan tertentu, maka benda langsung mengarah ke titik Linear GHSKemudian untuk percepatan, dengan prinsip yang serupa bahwa, percepatan adalah turunan dari kecepatan, sehingga representasi matematis untuk percepatan satuannya adalah dan penjelasan parameter yang persis seperti sebelumnya untuk tadi kita telah menganalisis kinematika dari osilasi suatu benda, nah mirip dengan benda yang bergerak linear, kita juga nanti bakal ngebahas tentang dinamikanya, alias penyebab bergeraknya dengan menggunakan Hukum Hooke yang akan dijelaskan pada materi yang akan tukang iseng baca nanti.

Vmerupakan kecepatan ya. Rumus kecepatan v pada gerak harmonik sederhana adalah A sin wt, kemudian diturunkan menjadi A w cos wt. Persamaan Percepatan pada GHS. Persamaa percepatan pada GHS adalah turunan kecepatan terhadap waktu. a = dv/dt. a = d(Aw cos wt)/dt. a = -Aw 2 sin wt. karena. y = A sin wt. maka. a = -w 2 y. Dalam persamaan atau rumus Gerak Harmonik Sederhana juga berhubungan dengan percepatan.

College Loan Consolidation Wednesday, December 17th, 2014 - Kelas XI Getaran harmonik atau getaran selaras memiliki ciri frekuensi getaran yang tetap. Pernahkan kita mengamati apa yang terjadi ketika senar gitar dipetik lalu dilepaskan? kita akan melihat suatu gerak bolak-balik melewati lintasan yang sama. Gerakan seperti ini dinamakan gerak periodik. Contoh lain gerak periodik adalah gerakan bumi mengelilingi matahari revolusi bumi, gerakan bulan mengelilingi bumi, gerakan benda yang tergantung pada sebuah pegas, dan gerakan sebuah bandul. Di antara gerak periodik ini ada gerakan yang dinamakan gerak Pengertian Getaran Harmonik Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo di duga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c Untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut. Fp = -kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut. Fp = -kX = ma atau Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat Getaran Harmonik Syarat suatu gerak dikatakan getaran harmonik, antara lain Gerakannya periodik bolak-balik. Gerakannya selalu melewati posisi keseimbangan. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonik a. Periode dan Frekuensi Sistem Pegas kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = -kX dan gaya sentripetal F = -4π 2 mf2X. -4π 2 mf2X = -kX 4π 2 mf2 = k Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. b. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Gaya yang bekerja pada bandul sederhana Persamaan gaya pemulih pada bandul sederhana adalah F = -mg sinθ . Untuk sudut θ kecil θ dalam satuan radian, maka sin θ = θ . Oleh karena itu persamaannya dapat ditulis F = -mg . Karena persamaan gaya sentripetal adalah F = -4π 2 mf2X, maka kita peroleh persamaan sebagai berikut. -4π 2 mf2X = -mg 4π 2 f2 = Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonik Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. a. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar diabawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah θ = t = . Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut. Y = A sin θ = A sin t = A sin Besar sudut dalam fungsi sinus θ disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut θ0, maka persamaanya dapat dituliskan sebagai berikut. Y = A sin θ = A sin t + θ0 = A sin +θ0 Sudut fase getaran harmoniknya adalah sebagai berikut. Karena Φ disebut fase, maka fase getaran harmonik adalah sebagai berikut. Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut. Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2¼ ditulis sebagai beda fase ¼. b. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut. vmaks = A c. Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. ay = A [- sin wt + θ 0] ay = - 2A sin t + θ 0 ay = - 2y Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut. amaks = – 2 A Energi Getaran Harmonik Benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah kedua energi ini disebut energi mekanik. a. Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Karena Ek =½ mvy2 dan vy = A cos t, maka Energi kinetik juga dapat ditulis dalam bentuk lain seperti berikut. Ek maks = m 2 A2, dicapai jika cos2 t = 1. Artinya, t harus bernilai , , …, dan seterusnya. y = A cos t y = A cos y = A di titik setimbang Ek min = 0, dicapai bila cos2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A cos t y = A cos 0 y = A di titik balik Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. b. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut. Ep = ky2 Ep = m 2 A sin t2 Ep = m 2 A2 sin2 t Ep maks = m 2 A2 dicapai jika sin2 t = 1. Artinya t harus bernilai , 3, … , dan seterusnya y = A sin y = A di titik balik Ep min = 0, dicapai jika sin2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A sin t y = A sin 0 y = 0 di titik setimbang c. Energi Mekanik Gerak Harmonik Energi mekanik sebuah benda yang bergerak harmonik adalah jumlah energi kinetik dan energi potensialnya. Berdasarkan persamaan diatas, ternyata energi mekanik suatu benda yang bergetar harmonik tidak tergantung waktu dan tempat. Jadi, energi mekanik sebuah benda yang bergetar harmonik dimanapun besarnya sama. Em = Ek maks = Ep maks Em = m 2 A2 = k A2 Kedudukan gerak harmonik sederhana pada saat Ep dan Ek bernilai maksimum dan minimum. d. Kecepatan Benda yang Bergetar Harmonik Untuk menghitung kecepatan maksimum benda atau pegas yang bergetar harmonik dapat dilakukan dengan menyamakan persamaan kinetik dan energi total mekaniknya dimana Ek = Em. Sedangkan untuk menghitung kecepatan benda di titik sembarang dilakukan dengan menggunakan persamaan kekekalan energi mekanik 2ZtJwG.
  • f0mgdjzh25.pages.dev/325
  • f0mgdjzh25.pages.dev/417
  • f0mgdjzh25.pages.dev/404
  • f0mgdjzh25.pages.dev/367
  • f0mgdjzh25.pages.dev/391
  • f0mgdjzh25.pages.dev/161
  • f0mgdjzh25.pages.dev/13
  • f0mgdjzh25.pages.dev/475
  • dalam getaran harmonik percepatan getaran